RBRC02231, B6;129-Atg5<tm1Nmz>

RBRC No. RBRC02231
Type Targeted MutationCartagena
Species Mus musculus
Strain name B6;129-Atg5<tm1Nmz>
Former Common name No Data
H-2 Haplotype No Data
ES cell line R1 [(129X1/SvJ x 129S1/Sv)F1-Kitl<+>]
Background strain No Data
Appearance
1 Appearance black
Genotype a/a B/B C/C
Strain development Developed by Masahiko Hatano and Takeshi Tokuhisa, Graduate School of Medicine, Chiba University, and Noboru Mizushima, National Institute for Basic Biology in 2003. The knockout construct was electoroporated into R1 ES cells derived from (129X1/SvJ x 129S1/Sv)F1-Kitl<+>. The mutant mice were backcrossed to C57BL/6J.
Strain description Atg5 knockout mice. Exons 1 and 2 of Atg5 were replaced with a neomycin resistance gene. Homozygous mutant mice die during the early neonatal period due to a lack of nutrients. Autophagy is an intracellular degradation process by an autophagosome, which contains a portion of cytoplasm and subsequently degrades upon fusion with a lysosome. Autophagy is considered to be important for the cellular response to starvation and the normal turnover of cytoplasmic components as well. Atg5, autophagy-related 5 is essential for autophagosome formation. Conditional mice (floxed allele) are also available: B6.129S-Atg5<tm1Myok> (RBRC02975).
Colony maintenance Heterozygote x Wild-type [C57BL/6JJmsSlc]
Health Report
Gene Details
Promoter No Data
1 Symbol Atg5
Symbol name autophagy-related 5 (yeast)
Chromosome 10
Common name 2010107M05Rik, 3110067M24Rik, Apg5l, Paddy
Symbol description No Data
Promoter herpes simplex virus thymidine kinase promoter (HSV tk promoter)
2 Symbol neo
Symbol name neomycin resistance gene (E. coli)
Chromosome 10
Common name neo; neomycin;
Symbol description No Data
References Nature. 2004 Dec 23;432(7020):1032-6. Epub 2004 Nov 3.

The role of autophagy during the early neonatal starvation period.
Research applications Cell Biology Research
Specific Term and Conditions The following terms and conditions will be requested by the DEPOSITOR.
The RECIPIENT of BIOLOGICAL RESOURCE shall obtain a prior written consent on use of it from the DEPOSITOR.
In publishing the research results obtained by use of the BIOLOGICAL RESOURCE, a citation of the following literature(s) designated by the DEPOSITOR is requested.
Nature, 432, 1032-1036 (2004).
In publishing the research results to be obtained by use of the BIOLOGICAL RESOURCE, an acknowledgment to the DEPOSITOR is requested.
BIOLOGICAL RESOURCE is limited to for academic research in non-profit organization. Any use of the BIOLOGICAL RESOURCE for profit purposes by a non-profit organization or any use of the BIOLOGICAL RESOURCE by a profit organization requires a separate license from the DEPOSITOR prior to distribution. The RECIPIENT must contact the DEPOSITOR in the case of application for any patents or commercial use based on the results from the use of the BIOLOGICAL RESOURCE.
Additional information
1 Mouse of the Month Jul 2009
Genetic Background
2 Lab HP
3 Genotyping protocol <PCR>
Depositor Mizushima, Noboru (The University of Tokyo, Graduate School of Medicine) Mizushima, Noboru
Strain Status /
Availability
(Expected delivery)


Frozen
Cryopreserved embryos : Within 1 month
Recovered litters from cryopreserved embryos : 2-4 months

Sperm
Cryopreserved sperm : Within 1 month
Recovered litters from cryopreserved sperm : 2-4 months

Live
Live mouse :
BRC mice in Publications
Title Journal
(PMID)
Author
Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nat. Cell Biol. (2015).(25985393)
Wu Y, Li Y, Zhang H, Huang Y, Zhao P, Tang Y, Qiu X, Ying Y, Li W, Ni S, Zhang M, Liu L, Xu Y, Zhuang Q, Luo Z, Benda C, Song H, Liu B, Lai L, Liu X, Tse HF, Bao X, Chan WY, A Esteban M, Qin B, Pei D.

RBRC02975, B6.129S-Atg5<tm1Myok>

RBRC No. RBRC02975
Type Targeted MutationCartagena wks
Species Mus musculus
Strain name B6.129S-Atg5<tm1Myok>
Former Common name Atg5flox
H-2 Haplotype No Data
ES cell line CCE/EK.CCE [129S/SvEv-Gpi1]
Background strain C57BL/6
Appearance
1 Appearance black
Genotype a/a B/B C/C
Strain development Developed by Kenji Nakamura, Mitsubishi Kagaku Institute of Life Sciences and Noboru Mizushima, Tokyo Metropolitan Institute of Medical Science in 2003. The construct was electoroporated into CCE/EK.CCE ES cells derived from 129S/SvEv-Gpi1<c>. The mutant mice were backcrossed to C57BL/6J.
Strain description Atg5 floxed mice. Exon 3 of Atg5 gene was flanked by loxP sites containing neomycin resistant cassette. Autophagy is an intracellular degradation process by an autophagosome, which contains a portion of cytoplasm and subsequently degrades upon fusion with a lysosome. Autophagy is considered to be important for the cellular response to starvation and the normal turnover of cytoplasmic components as well. Atg5, autophagy-related 5 is essential for autophagosome formation. Conditional B6.129S-Atg5<tm1Myok> (RBRC02975) mice can be crossed with various tissue-specific Cre transgenic mice to study the role of autophagy in adult tissues. Null knockout mice are also available: B6;129-Atg5<tm1Nmz> (RBRC02231).
Colony maintenance Homozygote x Homozygote [or Crossing to C57BL/6JJmsSlc]
Health Report
Gene Details
Promoter No Data
1 Symbol Atg5
Symbol name autophagy-related 5 (yeast)
Chromosome 10
Common name No Data
Symbol description No Data
2 Symbol loxP
Symbol name phage P1 loxP
Chromosome 10
Common name No Data
Symbol description No Data
Promoter herpes simplex virus thymidine kinase promoter (HSV tk promoter)
3 Symbol neo
Symbol name neomycin resistance gene (E. coli)
Chromosome 10
Common name neo; neomycin;
Symbol description No Data
References Nature. 2006 Jun 15;441(7095):885-9. Epub 2006 Apr 19.

Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice.
Research applications Cell Biology Research,
Cre/loxP system
Specific Term and Conditions The following terms and conditions will be requested by the DEPOSITOR.
The RECIPIENT of BIOLOGICAL RESOURCE shall obtain a prior written consent on use of it from the DEPOSITOR.
In publishing the research results obtained by use of the BIOLOGICAL RESOURCE, a citation of the following literature(s) designated by the DEPOSITOR is requested.
Nature, 441, 885-889 (2006).
In publishing the research results to be obtained by use of the BIOLOGICAL RESOURCE, an acknowledgment to the DEPOSITOR is requested.
BIOLOGICAL RESOURCE is limited to for academic research in non-profit organization. Any use of the BIOLOGICAL RESOURCE for profit purposes by a non-profit organization or any use of the BIOLOGICAL RESOURCE by a profit organization requires a separate license from the DEPOSITOR prior to distribution. The RECIPIENT must contact the DEPOSITOR in the case of application for any patents or commercial use based on the results from the use of the BIOLOGICAL RESOURCE.
Additional information
1 Lab HP
2 Mouse of the Month Jul 2009
Genetic Background
Breeding characters
3 Genotyping protocol <PCR>
Depositor Mizushima, Noboru (The University of Tokyo, Graduate School of Medicine) Mizushima, Noboru
Strain Status /
Availability
(Expected delivery)


Frozen
Cryopreserved embryos : Within 1 month
Recovered litters from cryopreserved embryos : 2-4 months

Sperm
Cryopreserved sperm : Within 1 month
Recovered litters from cryopreserved sperm : 2-4 months

Live
Live mouse :
BRC mice in Publications
Title Journal
(PMID)
Author
Liver-specific loss of Atg5 causes persistent activation of Nrf2 and protects against acetaminophen-induced liver injury. Toxicol Sci.127(2): 438-50 (2012).(22491424)
Ni HM, Boggess N, McGill MR, Lebofsky M, Borude P, Apte U, Jaeschke H, Ding WX.
Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med.19(10): 1281-7 (2013).(24056772)
Torisu T, Torisu K, Lee IH, Liu J, Malide D, Combs CA, Wu XS, Rovira II, Fergusson MM, Weigert R, Connelly PS, Daniels MP, Komatsu M, Cao L, Finkel T.
p53 status determines the role of autophagy in pancreatic tumour development. Nature. (2013).(24305049)
Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, Mackay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, Adams PD, Anderson KI, Gottlieb E, Sansom OJ, Ryan KM.
Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J. (2014).(25316028)
Tang AH, Rando TA.
Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity. Cell Host Microbe.19(1): 79-90 (2015).(26749442)
Akoumianaki T, Kyrmizi I, Valsecchi I, Gresnigt MS, Samonis G, Drakos E, Boumpas D, Muszkieta L, Prevost MC, Kontoyiannis DP, Chavakis T, Netea MG, van de Veerdonk FL, Brakhage AA, El-Benna J, Beauvais A, Latge JP, Chamilos G.
Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicol. Appl. Pharmacol. (2016).(27594529)
Jessop F, Hamilton RF, Rhoderick JF, Shaw PK, Holian A.
Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med.22(12): 1428-1438 (2016).(27841876)
Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Büttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F.
Early AMD-like defects in the RPE and retinal degeneration in aged mice with RPE-specific deletion of Atg5 or Atg7. Mol. Vis.23: 228-241 (2017).(28465655)
Zhang Y, Cross SD, Stanton JB, Marmorstein AD, Le YZ, Marmorstein LY.
Dietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy. J. Lipid Res.58(9): 1808-1821 (2017).(28729463)
Shen L, Yang Y, Ou T, Key CC, Tong SH, Sequeira RC, Nelson JM, Nie Y, Wang Z, Boudyguina E, Shewale SV, Zhu X.
Knockout of autophagy gene, ATG5 in mice vaginal cells abrogates cytokine response and pathogen clearance during vaginal infection of Candida albicans. Cell Immunol. (2017).(29306553)
Shroff A, Sequeira R, Patel V, Reddy KVR.
Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J. Clin. Invest. (2018).(29920188)
Alissafi T, Hatzioannou A, Mintzas K, Barouni RM, Banos A, Sormendi S, Polyzos A, Xilouri M, Wielockx B, Gogas H, Verginis P.
Differential and convergent utilization of autophagy components by positive-strand RNA viruses. PLoS Biol. (2019).(30608919)
Abernathy E, Mateo R, Majzoub K, van Buuren N, Bird SW, Carette JE, Kirkegaard K.

RBRC09674, C57BL/6J-Atg13<em1Nmz>

RBRC No. RBRC09674
Type CRISPR/Cas9
Species Mus musculus
Strain name C57BL/6J-Atg13<em1Nmz>
Former Common name Atg13 KO
H-2 Haplotype No Data
Background strain No Data
Appearance
1 Appearance No Data
Genotype No Data
Strain development Developed by Noboru Mizushima, Graduate School and Faculty of Medicine, The University of Tokyo. With the CRISPR/Cas9, a frameshift mutation was introduced into exon 5 of the Atg13 gene. C57BL/6 genetic background.
Strain description Atg13 knockout mice. Homozygous mutants are lethal at embryonic day 17, showing myocardial growth defects.
Health Report No Data
Gene Details
Promoter No Data
1 Symbol Atg13
Symbol name autophagy related 13
Chromosome 2
Common name No Data
Symbol description No Data
References No Data

Research applications No Data
Specific Term and Conditions The following terms and conditions will be requested by the DEPOSITOR.
Prior to requesting the BIOLOGICAL RESOURCE, the RECIPIENT must obtain approval from the DEPOSITOR using the Approval Form.
In publishing the research results obtained by use of the BIOLOGICAL RESOURCE, a citation of the following literature(s) designated by the DEPOSITOR is requested.
Mol. Cell Biol. 36, 585-595 (2015).
In publishing the research results to be obtained by use of the BIOLOGICAL RESOURCE, an acknowledgment to the DEPOSITOR is requested.
BIOLOGICAL RESOURCE is limited to for academic research in non-profit organization. Any use of the BIOLOGICAL RESOURCE for profit purposes by a non-profit organization or any use of the BIOLOGICAL RESOURCE by a profit organization requires a separate license from the DEPOSITOR prior to distribution. The RECIPIENT must contact the DEPOSITOR in the case of application for any patents or commercial use based on the results from the use of the BIOLOGICAL RESOURCE.
Additional information
1 No Data
2 Genotyping protocol <PCR>
Depositor Mizushima, Noboru (The University of Tokyo, Graduate School of Medicine) Mizushima, Noboru
Strain Status /
Availability
(Expected delivery)


Sperm
Cryopreserved sperm : Within 1 month
Recovered litters from cryopreserved sperm : 2-4 months

RBRC09930, C57BL/6J-Tg(CAG-GFP/LC3/RFP/LC3<*>deltaG)2Nmz

RBRC No. RBRC09930
Type TransgeneCartagena
Species Mus musculus
Strain name C57BL/6J-Tg(CAG-GFP/LC3/RFP/LC3<*>deltaG)2Nmz
Former Common name GFP-LC3-RFP-LC3 delta G#2
H-2 Haplotype No Data
Background strain No Data
Appearance
1 Appearance No Data
Genotype No Data
Strain development Developed by Noboru Mizushima, Graduate School and Faculty of Medicine, The University of Tokyo. C57BL/6J genetic background.
Strain description Transgenic mice expressing GFP-LC3 and RFP-LC3ΔG under the control of the CAG promoter. High expression was observed only in the skeletal muscle.
Health Report
Gene Details
Promoter No Data
1 Symbol Map1lc3b
Symbol name microtubule-associated protein 1 light chain 3 beta
Chromosome UN
Common name No Data
Symbol description No Data
2 Symbol RFP
Symbol name Red Fluorescent Protein (Discosoma sp.)
Chromosome UN
Common name No Data
Symbol description No Data
Promoter CAG promoter (CMV-IE enhancer, chicken beta-actin promoter, rabbit beta-globin genomic DNA)
3 Symbol EGFP
Symbol name Enhanced Green Fluorescent Protein, F64L and S65T (Jellyfish)
Chromosome UN
Common name No Data
Symbol description No Data
References No Data

Research applications Fluorescent Proteins/lacZ System
Specific Term and Conditions The following terms and conditions will be requested by the DEPOSITOR.
1. BIOLOGICAL RESOURCE is limited to for academic research in non-profit organization. 2. The RECIPIENT of BIOLOGICAL RESOURCE shall obtain a prior written consent on use of it from the DEPOSITOR. 3. Any use of the BIOLOGICAL RESOURCE for profit purposes by a non-profit organization or any use of the BIOLOGICAL RESOURCE by a profit organization requires a separate license from the DEPOSITOR prior to distribution. 4. In publishing the research results obtained by use of the BIOLOGICAL RESOURCE, a citation of the following literature(s) designated by the DEPOSITOR is requested: Mol. Cell 64:835-849 (2016). 5. In publishing the research results to be obtained by use of the BIOLOGICAL RESOURCE, an acknowledgment to the DEPOSITOR is requested. 6. The RECIPIENT must contact the DEPOSITOR in the case of application for any patents or commercial use based on the results from the use of the BIOLOGICAL RESOURCE.
Additional information
1 GFP Transfer License (Japanese / English)
Please fill in the Schedule A, and submit two signed copies to us together with two signed copies of RIKEN BRC’s MTA. Please also read Schedule B.
2 Genotyping protocol <PCR>
Depositor Mizushima, Noboru (The University of Tokyo, Graduate School of Medicine) Mizushima, Noboru
Strain Status /
Availability
(Expected delivery)


Sperm
Cryopreserved sperm : Within 1 month
Recovered litters from cryopreserved sperm : 2-4 months

RBRC09994, C57BL/6J-Tg(Eno2-GFP/Atg5)1Nmz

RBRC No. RBRC09994
Type TransgeneCartagena
Species Mus musculus
Strain name C57BL/6J-Tg(Eno2-GFP/Atg5)1Nmz
Former Common name Nse-Atg5
H-2 Haplotype No Data
Background strain No Data
Appearance
1 Appearance No Data
Genotype No Data
Strain description No Data
Health Report No Data
Gene Details
Promoter No Data
1 Symbol Atg5
Symbol name autophagy-related 5 (yeast)
Chromosome UN
Common name No Data
Symbol description No Data
2 Symbol No Data
Symbol name SV40 poly A signal
Chromosome UN
Common name No Data
Symbol description No Data
Promoter SV40 promoter
3 Symbol neo
Symbol name neomycin resistance gene (E. coli)
Chromosome UN
Common name No Data
Symbol description No Data
Promoter rat Eno2 promoter
4 Symbol EGFP
Symbol name Enhanced Green Fluorescent Protein, F64L and S65T (Jellyfish)
Chromosome UN
Common name No Data
Symbol description No Data
References No Data

Research applications Fluorescent Proteins/lacZ System
Specific Term and Conditions The following terms and conditions will be requested by the DEPOSITOR.
1. BIOLOGICAL RESOURCE is limited to for academic research in non-profit organization. 2. The RECIPIENT of BIOLOGICAL RESOURCE shall obtain a prior written consent on use of it from the DEPOSITOR. 3. Any use of the BIOLOGICAL RESOURCE for profit purposes by a non-profit organization or any use of the BIOLOGICAL RESOURCE by a profit organization requires a separate license from the DEPOSITOR prior to distribution. 4. In publishing the research results obtained by use of the BIOLOGICAL RESOURCE, a citation of the following literature(s) designated by the DEPOSITOR is requested: Dev. Cell 39: 116-130 (2016). 5. In publishing the research results to be obtained by use of the BIOLOGICAL RESOURCE, an acknowledgment to the DEPOSITOR is requested. 6. The RECIPIENT must contact the DEPOSITOR in the case of application for any patents or commercial use based on the results from the use of the BIOLOGICAL RESOURCE.
Additional information
1 GFP Transfer License (Japanese / English)
Please fill in the Schedule A, and submit two signed copies to us together with two signed copies of RIKEN BRC’s MTA. Please also read Schedule B.
2 Genotyping protocol <PCR>
Depositor Mizushima, Noboru (The University of Tokyo, Graduate School of Medicine) Mizushima, Noboru
Strain Status /
Availability
(Expected delivery)


Sperm
Cryopreserved sperm : Within 1 month
Recovered litters from cryopreserved sperm : 2-4 months

RBRC00806, GFP-LC3#53

RBRC No. RBRC00806
Type TransgeneCartagena
Species Mus musculus
Strain name GFP-LC3#53
Former Common name No Data
H-2 Haplotype No Data
Background strain C57BL/6JJcl
Appearance
1 Appearance black
Genotype No Data
Strain development Developed by Noboru Mizushima, National Institute for Basic Biology. The transgene was injected into the pronuclei of C57BL/6 x (C57BL/6 x DBA/2)F1 fertilized eggs. The mice were backcrossed to C57BL/6J.
Strain description These transgenic mice express a fusion cDNA encoding enhanced GFP jointed at its C-terminus to rat microtubule-associated protein 1 light chain 3 beta under the control of the CAG promoter. The occurrence of autophagy in mouse tissues can be monitored by the GFP.
Colony maintenance Carrier x Carrier, Noncarrier [or Crossing to C57BL/6JJcl]
Health Report
Gene Details
Promoter No Data
1 Symbol Map1lc3b
Symbol name microtubule-associated protein 1 light (rat)
Chromosome 2
Common name microtubule associating protein (MAP)1 light chain 3
Symbol description LC3 is the first mammalian protein identified to associate with autophagosomes.
It is a mammalian homologue of yeast Aut7/Apg8, and is required for autophagosome formation.
Promoter CAG promoter (CMV-IE enhancer, chicken beta-actin promoter, rabbit beta-globin genomic DNA)
2 Symbol GFP
Symbol name Green Fluorescent Protein (Jellyfish)
Chromosome 2
Common name No Data
Symbol description No Data
References Mol Biol Cell. 2004 Mar;15(3):1101-11. Epub 2003 Dec 29.
Nature. 2004 Dec 23;432(7020):1032-6. Epub 2004 Nov 3.

Research applications Cell Biology Research,
Fluorescent Proteins/lacZ System
Specific Term and Conditions The following terms and conditions will be requested by the DEPOSITOR.
The RECIPIENT of BIOLOGICAL RESOURCE shall obtain a prior written consent on use of it from the DEPOSITOR.
In publishing the research results obtained by use of the BIOLOGICAL RESOURCE, a citation of the following literature(s) designated by the DEPOSITOR is requested.
Mol. Biol. Cell 15, 1101-1111 (2004).
In publishing the research results to be obtained by use of the BIOLOGICAL RESOURCE, an acknowledgment to the DEPOSITOR is requested.
BIOLOGICAL RESOURCE is limited to for academic research in non-profit organization. Any use of the BIOLOGICAL RESOURCE for profit purposes by a non-profit organization or any use of the BIOLOGICAL RESOURCE by a profit organization requires a separate license from the DEPOSITOR prior to distribution. The RECIPIENT must contact the DEPOSITOR in the case of application for any patents or commercial use based on the results from the use of the BIOLOGICAL RESOURCE.
Additional information
1 GFP Transfer License (Japanese / English)
Please fill in the Schedule A, and submit two signed copies to us together with two signed copies of RIKEN BRC’s MTA. Please also read Schedule B.
Lab HP
2 Mouse of the Month Mar 2005
Mouse of the Month Mar 2012, Mouse of the Month Oct 2016
Genetic Background
3 Genotyping protocol <PCR>
Depositor Mizushima, Noboru (The University of Tokyo, Graduate School of Medicine) Mizushima, Noboru
Strain Status /
Availability
(Expected delivery)


Frozen
Cryopreserved embryos : Within 1 month
Recovered litters from cryopreserved embryos : 2-4 months

Sperm
Cryopreserved sperm : Within 1 month
Recovered litters from cryopreserved sperm : 2-4 months

Live
Live mouse :
BRC mice in Publications
Title Journal
(PMID)
Author
Cathepsin-L, a key molecule in the pathogenesis of drug-induced and I-cell disease-mediated gingival overgrowth: a study with cathepsin-L-deficient mice. Am. J. Pathol.161: 2047-2052 (2002).(12466121)
Nishimura F, Naruishi H, Naruishi K, Yamada T, Sasaki J, Peters C, Uchiyama Y, Murayama Y.
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell.15: 1101-1111 (2004).(14699058)
Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y.
The role of autophagy during the early neonatal starvation period. Nature432: 1032-1036 (2004).(15525940)
Akiko KUMA, Masahiko HATANO, Makoto MATSUI, Akitsugu YAMAMOTO, Haruaki NAKAYA, Tamotsu YOSHIMORI, Yoshinori OHSUMI, Takeshi TOKUHISA, Noboru MIZUSHIMA
Autophagy defends cells against invading group A Streptococcus. Science306: 1037-1040 (2004).(15528445)
Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T.
Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am. J. Pathol.167: 1713-1728 (2005).(16314482)
Masato KOIKE, Masahiro SHIBATA, Satoshi WAGURI, Kentaro YOSHIMURA, Isei TANIDA, Eiki KOMINAMI, Takahiro GOTOW, Christoph PETERS, Kurt von FIGURA, Noboru MIZUSHIMA, Paul SAFTIG, Yasuo UCHIYAMA
In situ detection of starvation-induced autophagy. J Histochem Cytochem.54(1): 85-96 (2006).(16148314)
Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM.
Detection of autophagy in tissue by standard immunohistochemistry: possibilities and limitations. Autophagy.2(1): 18809 (2006).(16874065)
Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM.
Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol.169(2): 566-83 (2006).(16877357)
Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan CY.
Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science.315(5817): 1398-401 (2007).(17272685)
Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A.
Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res.100(6): 914-22 (2007).(17332429)
Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J.
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med.13(5): 619-24 (2007).(17450150)
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K.
Ambra1 regulates autophagy and development of the nervous system. Nature.447(7148): 1121-5 (2007).(17589504)
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F.
Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron.57(5): 730-45 (2008).(18341993)
Matsuda S, Miura E, Matsuda K, Kakegawa W, Kohda K, Watanabe M, Yuzaki M.
Premature aging in mice activates a systemic metabolic response involving autophagy induction. Hum Mol Genet.17(14): 2196-211 (2008).(18443001)
Mari o G, Ugalde AP, Salvador-Montoliu N, Varela I, Quir s PM, Cadi anos J, van der Pluijm I, Freije JM, L pez-Ot n C.
Lysosomal activity associated with developmental axon pruning. J Neurosci.28(36): 8993-9001 (2008).(18768693)
Song JW, Misgeld T, Kang H, Knecht S, Lu J, Cao Y, Cotman SL, Bishop DL, Lichtman JW.
Rapamycin induces autophagy in islets: relevance in islet transplantation. Transplant Proc.41(1): 334-8 (2009).(19249550)
Tanemura M, Saga A, Kawamoto K, Machida T, Deguchi T, Nishida T, Sawa Y, Doki Y, Mori M, Ito T.
Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. Am J Pathol.174(5): 1705-14 (2009).(19342365)
Kanamori H, Takemura G, Maruyama R, Goto K, Tsujimoto A, Ogino A, Li L, Kawamura I, Takeyama T, Kawaguchi T, Nagashima K, Fujiwara T, Fujiwara H, Seishima M, Minatoguchi S.
The drs tumor suppressor is involved in the maturation process of autophagy induced by low serum. Cancer Lett.283(1): 74-83 (2009).(19368996)
Tambe Y, Yamamoto A, Isono T, Chano T, Fukuda M, Inoue H.
Autophagy maintains cardiac function in the starved adult. Autophagy.5(7): 1034-6 (2009).(19587530)
Takemura G, Kanamori H, Goto K, Maruyama R, Tsujimoto A, Fujiwara H, Seishima M, Minatoguchi S.
Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J Clin Invest.119(11): 3340-55 (2009).(19805911)
Mareninova OA, Hermann K, French SW, O’Konski MS, Pandol SJ, Webster P, Erickson AH, Katunuma N, Gorelick FS, Gukovsky I, Gukovskaya AS.
Alzheimer disease-associated peptide, amyloid beta40, inhibits vascular regeneration with induction of endothelial autophagy. Arterioscler Thromb Vasc Biol.29(11): 1909-15 (2009).(19815818)
Hayashi S, Sato N, Yamamoto A, Ikegame Y, Nakashima S, Ogihara T, Morishita R.
Alternative cell death of Apaf1-deficient neural progenitor cells induced by withdrawal of EGF or insulin. Biochim Biophys Acta.1800(3): 405-15 (2010).(19914347)
Shiraishi H, Okamoto H, Hara H, Yoshida H.
Double transgenic mice crossed GFP-LC3 transgenic mice with alphaMyHC-mCherry-LC3 transgenic mice are a new and useful tool to examine the role of autophagy in the heart. Circ J.74(1): 203-6 (2010).(19966504)
Terada M, Nobori K, Munehisa Y, Kakizaki M, Ohba T, Takahashi Y, Koyama T, Terata Y, Ishida M, Iino K, Kosaka T, Watanabe H, Hasegawa H, Ito H.
Methods in mammalian autophagy research. Cell.140(3): 313-26 (2010).(20144757)
Mizushima N, Yoshimori T, Levine B.
Short-term fasting induces profound neuronal autophagy. Autophagy.6(6): 702-10 (2010).(20534972)
Alirezaei M, Kemball CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB.
Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol Chem.391(8): 913-22 (2010).(20536383)
Dennem rker J, Lohm ller T, M ller S, Aguilar SV, Tobin DJ, Peters C, Reinheckel T.
A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc Natl Acad Sci U S A.107(39): 16982-7 (2010).(20833817)
Tsvetkov AS, Miller J, Arrasate M, Wong JS, Pleiss MA, Finkbeiner S.
Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol.84(23): 12110-24 (2010).(20861268)
Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses WB, Whitton JL.
In vivo imaging of autophagy in a mouse stroke model. Autophagy.6(8): 1107-14 (2010).(20930570)
Tian F, Deguchi K, Yamashita T, Ohta Y, Morimoto N, Shang J, Zhang X, Liu N, Ikeda Y, Matsuura T, Abe K.
Autophagy in myocardium of murine hearts subjected to ischemia followed by reperfusion. Histochem Cell Biol.134(5): 519-26 (2010).(20931339)
French CJ, Taatjes DJ, Sobel BE.
Vitamin K3 attenuates cerulein-induced acute pancreatitis through inhibition of the autophagic pathway. Pancreas.40(1): 84-94 (2011).(20881898)
Chinzei R, Masuda A, Nishiumi S, Nishida M, Onoyama M, Sanuki T, Fujita T, Moritoh S, Itoh T, Kutsumi H, Mizuno S, Azuma T, Yoshida M.
Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation. Arch Biochem Biophys.506(2): 223-35 (2011).(21156154)
Fujishima Y, Nishiumi S, Masuda A, Inoue J, Nguyen NM, Irino Y, Komatsu M, Tanaka K, Kutsumi H, Azuma T, Yoshida M.
Autophagy regulates embryonic survival during delayed implantation. Endocrinology.152(5): 2067-75 (2011).(21363932)
Lee JE, Oh HA, Song H, Jun JH, Roh CR, Xie H, Dey SK, Lim HJ.
Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol.300(6): H2261-71 (2011).(21421825)
Kanamori H, Takemura G, Goto K, Maruyama R, Ono K, Nagao K, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T, Kawasaki M, Fujiwara T, Fujiwara H, Seishima M, Minatoguchi S.
In vivo optical imaging of motor neuron autophagy in a mouse model of amyotrophic lateral sclerosis. Autophagy.7(9): 985-92 (2011).(21628996)
Tian F, Morimoto N, Liu W, Ohta Y, Deguchi K, Miyazaki K, Abe K.
Differential roles of GSK-3beta during myocardial ischemia and ischemia/reperfusion. Circ Res.109(5): 502-11 (2011).(21737790)
Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J.
Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy.7(12): 1415-23 (2011).(22024752)
Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, Bonaldo P.
Proteasome activity and autophagosome content in liver are reciprocally regulated by ethanol treatment. Biochem Biophys Res Commun. (2011).(22142844)
Thomes PG, Trambly CS, Thiele GM, Duryee MJ, Fox HS, Haorah J, Donohue TM Jr.
Autophagy regulates inflammation in adipocytes. Biochem Biophys Res Commun. (2011).(22155234)
Yoshizaki T, Kusunoki C, Kondo M, Yasuda M, Kume S, Morino K, Sekine O, Ugi S, Uzu T, Nishio Y, Kashiwagi A, Maegawa H.
Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology.55(1): 222-32 (2012).(21932416)
Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX.
p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol.52(1): 175-84 (2012).(22044588)
Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, Ikeda K, Ueyama T, Okigaki M, Matsubara H.
Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol.196(4): 407-17 (2012).(22331844)
Maday S, Wallace KE, Holzbaur EL.
Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-beta1. J Biol Chem.287(15): 11677-88 (2012).(22351764)
Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ, Choi ME.
Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch Biochem Biophys.521(1-2): 95-101 (2012).(22475450)
Inoue J, Nishiumi S, Fujishima Y, Masuda A, Shiomi H, Yamamoto K, Nishida M, Azuma T, Yoshida M.
High resolution intravital imaging of subcellular structures of mouse abdominal organs using a microstage device. PLoS One.7(3): e33876 (2012).(22479464)
Cao L, Kobayakawa S, Yoshiki A, Abe K.
Autophagy in the intestinal epithelium is not involved in the pathogenesis of intestinal tumors. Biochem Biophys Res Commun.421(4): 768-72 (2012).(22546555)
Nishiumi S, Fujishima Y, Inoue J, Masuda A, Azuma T, Yoshida M.
Autophagy in idiopathic pulmonary fibrosis. PLoS One.7(7): e41394 (2012).(22815997)
Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO, Morse D.
Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway. Autophagy.8(9): 1342-56 (2012).(22863802)
Chong A, Wehrly TD, Child R, Hansen B, Hwang S, Virgin HW, Celli J.
Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovasc Res. (2012).(22952253)
Kawaguchi T, Takemura G, Kanamori H, Takeyama T, Watanabe T, Morishita K, Ogino A, Tsujimoto A, Goto K, Maruyama R, Kawasaki M, Mikami A, Fujiwara T, Fujiwara H, Minatoguchi S.
Lc3 transgene Improves Survival and Attenuates Lung Injury Through Increasing Autophagosomal Clearance in Septic Mice. Ann Surg. (2012).(22968077)
Lo S, Yuan SS, Hsu C, Cheng YJ, Chang YF, Hsueh HW, Lee PH, Hsieh YC.
The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science.338(6110): 1072-6 (2012).(23112293)
Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR, Melia TJ, Roy CR.
Immunohistochemical analysis of macroautophagy: Recommendations and limitations. Autophagy.9(3): (2012).(23242143)
Martinet W, Schrijvers DM, Timmermans JP, Bult H, De Meyer GR.
alpha-Mangostin Reduced ER Stress-mediated Tumor Growth through Autophagy Activation. Immune Netw.12(6): 253-60 (2012).(23396851)
Kim SJ, Hong EH, Lee BR, Park MH, Kim JW, Pyun AR, Kim YJ, Chang SY, Chin YW, Ko HJ.
Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochem Pharmacol.85(1): 124-34 (2013).(23107818)
Sishi BJ, Loos B, van Rooyen J, Engelbrecht AM.
Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart. PLoS One.8(1): e51632 (2013).(23308102)
Hariharan N, Ikeda Y, Hong C, Alcendor RR, Usui S, Gao S, Maejima Y, Sadoshima J.
Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol.14(3): 298-305 (2013).(23354484)
Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F, Raimondi A, Fagioli C, Merlini A, Mariani E, Pasqualetto E, Orfanelli U, Ponzoni M, Sitia R, Casola S, Cenci S.
Phospholipase C-related catalytically inactive protein, a novel microtubule-associated protein 1 light chain 3-binding protein, negatively regulates autophagosome formation. Biochem Biophys Res Commun. (2013).(23399561)
Umebayashi H, Mizokami A, Matsuda M, Harada K, Takeuchi H, Tanida I, Hirata M, Kanematsu T.
Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum.65(7): 1843-52 (2013).(23606170)
Caram s B, Kiosses WB, Akasaki Y, Brinson DC, Eap W, Koziol J, Lotz MK.
Doxorubicin induces protein ubiquitination and inhibits proteasome activity during cardiotoxicity. Toxicology.309: 40808 (2013).(23639627)
Sishi BJ, Loos B, van Rooyen J, Engelbrecht AM.
Ketogenic essential amino acids replacement diet ameliorated hepatosteatosis with altering autophagy-associated molecules. Biochim Biophys Acta.1832(10): 1605-12 (2013).(23669346)
Xu L, Kanasaki M, He J, Kitada M, Nagao K, Jinzu H, Noguchi Y, Maegawa H, Kanasaki K, Koya D.
Unique insights into maternal mitochondrial inheritance in mice. Proc Natl Acad Sci U S A.110(32): 13038-43 (2013).(23878233)
Luo SM, Ge ZJ, Wang ZW, Jiang ZZ, Wang ZB, Ouyang YC, Hou Y, Schatten H, Sun QY.
Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun.4: 2308 (2013).(23917356)
Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, Ikeda K, Ogata T, Matoba S.
Paneth cells as a site of origin for intestinal inflammation. Nature. (2013).(24089213)
Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, B ck J, Martinez-Naves E, Glickman JN, Tschurtschenthaler M, Hartwig J, Hosomi S, Flak MB, Cusick JL, Kohno K, Iwawaki T, Billmann-Born S, Raine T, Bharti R, Lucius R, Kweon MN, Marciniak SJ, Choi A, Hagen SJ, Schreiber S, Rosenstiel P, Kaser A, Blumberg RS.
Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med.19(11): 1478-88 (2013).(24141421)
Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, Lim DS, Isobe M, Sadoshima J.
Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J Clin Invest. (2013).(24200693)
Lam HC, Cloonan SM, Bhashyam AR, Haspel JA, Singh A, Sathirapongsasuti JF, Cervo M, Yao H, Chung AL, Mizumura K, An CH, Shan B, Franks JM, Haley KJ, Owen CA, Tesfaigzi Y, Washko GR, Quackenbush J, Silverman EK, Rahman I, Kim HP, Mahmood A, Biswal SS, Ryter SW, Choi AM.
The Regulation of Autophagosome Dynamics by Huntingtin and HAP1 Is Disrupted by Expression of Mutant Huntingtin, Leading to Defective Cargo Degradation. J Neurosci.34(4): 1293-305 (2014).(24453320)
Wong YC, Holzbaur EL.
Autophagic activation in vitrified-warmed mouse oocytes. Reproduction. (2014).(24760879)
Bang S, Shin H, Song H, Suh CS, Lim HJ.
Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation. Cell Res. (2014).(24980960)
Ma B, Cao W, Li W, Gao C, Qi Z, Zhao Y, Du J, Xue H, Peng J, Wen J, Chen H, Ning Y, Huang L, Zhang H, Gao X, Yu L, Chen YG.
Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell.30(1): 71-85 (2014).(25026034)
Maday S, Holzbaur EL.
Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J. (2014).(25316028)
Tang AH, Rando TA.
An alpha-adrenergic agonist protects hearts by inducing Akt1-mediated autophagy. Biochem Biophys Res Commun. (2014).(25446079)
Nakaoka M, Iwai-Kanai E, Katamura M, Okawa Y, Mita Y, Matoba S.
A treadmill exercise reactivates the signaling of the mammalian target of rapamycin (mTor) in the skeletal muscles of starved mice. Biochem. Biophys. Res. Commun.456(1): 519-26 (2014).(25485704)
Zheng DM, Bian Z, Furuya N, Oliva Trejo JA, Takeda-Ezaki M, Takahashi K, Hiraoka Y, Mineki R, Taka H, Ikeda S, Komatsu M, Fujimura T, Ueno T, Ezaki J.
Anesthesia with Disuse Leads to Autophagy Up-regulation in the Skeletal Muscle. Anesthesiology. (2014).(25501690)
Kashiwagi A, Hosokawa S, Maeyama Y, Ueki R, Kaneki M, Martyn JA, Yasuhara S.
Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radic. Biol. Med.78: 179-189 (2015).(25450328)
Chang AL, Ulrich A, Suliman HB, Piantadosi CA.
Impairment of chaperone-mediated autophagy leads to selective lysosomal degradation defects in the lysosomal storage disease cystinosis. EMBO Mol Med7(2): 158-74 (2015).(25586965)
Napolitano G, Johnson JL, He J, Rocca CJ, Monfregola J, Pestonjamasp K, Cherqui S, Catz SD.
The relationship of autophagy defects and cartilage damage during joint aging in a mouse model. Arthritis Rheumatol. (2015).(25708836)
Caramés B, Olmer M, Kiosses WB, Lotz M.
Differential use of autophagy by primary dendritic cells specialized in cross-presentation. Autophagy11(6): 906-917 (2015).(25950899)
Mintern JD, Macri C, Chin WJ, Panozza SE, Segura E, Patterson NL, Zeller P, Bourges D, Bedoui S, McMillan PJ, Idris A, Nowell CJ, Brown A, Radford KJ, Johnston AP, Villadangos JA.
Autophagic adaptations in diabetic cardiomyopathy differ between type 1 and type 2 diabetes. Autophagy11(7): 1146-1160 (2015).(26042865)
Kanamori H, Takemura G, Goto K, Tsujimoto A, Mikami A, Ogino A, Watanabe T, Morishita K, Okada H, Kawasaki M, Seishima M, Minatoguchi S.
Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut. (2015).(26071131)
Mukherjee R, Mareninova OA, Odinokova IV, Huang W, Murphy J, Chvanov M, Javed MA, Wen L, Booth DM, Cane MC, Awais M, Gavillet B, Pruss RM, Schaller S, Molkentin JD, Tepikin AV, Petersen OH, Pandol SJ, Gukovsky I, Criddle DN, Gukovskaya AS, Sutton R; and NIHR Pancreas Biomedical Research Unit.
Stress-Induced CDK5 Activation Disrupts Axonal Transport via Lis1/Ndel1/Dynein. Cell Rep.12(3): 462-473 (2015).(26166569)
Klinman E, Holzbaur EL.
Decorin is an autophagy-inducible proteoglycan and is required for proper in vivo autophagy. Matrix Biol.48: 14-25 (2015).(26344480)
Gubbiotti MA, Neill T, Frey H, Schaefer L, Iozzo RV.
RUN and FYVE domain-containing protein 4 enhances autophagy and lysosome tethering in response to Interleukin-4. J. Cell Biol.210(7): 1133-52 (2015).(26416964)
Terawaki S, Camosseto V, Prete F, Wenger T, Papadopoulos A, Rondeau C, Combes A, Rodriguez Rodrigues C, Vu Manh TP, Fallet M, English L, Santamaria R, Soares AR, Weil T, Hammad H, Desjardins M, Gorvel JP, Santos MA, Gatti E, Pierre P.
Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy11(12): 2142-52. (2015).(26565691)
Chrisam M, Pirozzi M, Castagnaro S, Blaauw B, Polishchuck R, Cecconi F, Grumati P, Bonaldo P.
Histopathological analyses of murine menisci: implications for joint aging and osteoarthritis. Osteoarthritis Cartilage (2015).(26585241)
Kwok J, Onuma H, Olmer M, Lotz MK, Grogan SP, D’Lima DD.
A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia (2016).(27020449)
Kitada M, Ogura Y, Suzuki T, Sen S, Lee SM, Kanasaki K, Kume S, Koya D.
Compartment-Specific Regulation of Autophagy in Primary Neurons. J. Neurosci.36(22): 5933-5945 (2016).(27251616)
Sandra Maday, Erika L. F. Holzbaur.
The Cannabinoid Receptor 2 Protects Against Alcoholic Liver Disease Via a Macrophage Autophagy-Dependent Pathway. Sci. Rep. (2016).(27346657)
Timothé Denaës, Jasper Lodder, Marie-Noële Chobert, Isaac Ruiz, Jean-Michel Pawlotsky, Sophie Lotersztajn,a and Fatima Teixeira-Clercb.
Spermidine reduces lipid accumulation and necrotic core formation in atherosclerotic plaques via induction of autophagy. Atherosclerosis251: 319-327 (2016).(27450786)
Cédéric F. Michiels, Ammar Kurdi, Jean-Pierre Timmermans, Guido R.Y. De Meyer, Wim Martinet.
AMBRA1, a novel α-synuclein-binding protein, is implicated in the pathogenesis of multiple system atrophy. Brain Pathol. (2016).(27875637)
Miki Y, Tanji K, Mori F, Tatara Y, Utsumi J, Sasaki H, Kakita A, Takahashi H, Fimia GM, Wakabayashi K.
Prenatal alcohol exposure impairs autophagy in neonatal brain cortical microvessels. Cell Death Dis8(2): e2610 (2017).(28182007)
Girault V, Gilard V, Marguet F, Lesueur C, Hauchecorne M, Ramdani Y, Laquerrière A, Marret S, Jégou S, Gonzalez BJ, Brasse-Lagnel C, Bekri S.
The Use of DQ-BSA to Monitor the Turnover of Autophagy-Associated Cargo. Meth. Enzymol.587: 43-54 (2017).(28253971)
Frost LS, Dhingra A, Reyes-Reveles J, Boesze-Battaglia K.
Autophagy is essential for hearing in mice. Cell Death Dis8(5): e2780 (2017).(28492547)
Fujimoto C, Iwasaki S, Urata S, Morishita H, Sakamaki Y, Fujioka M, Kondo K, Mizushima N, Yamasoba T.
Sequestosome 1 (SQSTM1/p62) maintains protein folding capacity under endoplasmic reticulum stress in mouse hypothalamic organotypic culture. Neurosci. Lett.656: 103-107 (2017).(28619261)
Tominaga T, Goto M, Onoue T, Mizoguchi A, Sugiyama M, Tsunekawa T, Hagiwara D, Morishita Y, Ito Y, Iwama S, Suga H, Banno R, Arima H.
ATG4B inhibitors with a benzotropolone core structure block autophagy and augment efficiency of chemotherapy in mice. Biochem. Pharmacol.138: 150-162 (2017).(28642033)
Kurdi A, Cleenewerck M, Vangestel C, Lyssens S, Declercq W, Timmermans JP, Stroobants S, Augustyns K, De Meyer GRY, Van Der Veken P, Martinet W.
Compromised autophagy precedes meniscus degeneration and cartilage damage in mice. Osteoarthr. Cartil. (2017).(28801209)
Meckes JK, Caramés B, Olmer M, Kiosses WB, Grogan SP, Lotz MK, D’Lima DD.
Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. Proc. Natl. Acad. Sci. U.S.A.114(38): E8072-E8080 (2017).(28874532)
Brosius Lutz A, Chung WS, Sloan SA, Carson GA, Zhou L, Lovelett E, Posada S, Zuchero JB, Barres BA.
A role for autophagy in long-term spatial memory formation in male rodents. J. Neurosci. Res. (2017).(29230855)
Hylin MJ, Zhao J, Tangavelou K, Rozas NS, Hood KN, MacGowan JS, Moore AN, Dash PK.
Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids. EBioMedicine (2018).(29606629)
Allan Sauvat, Guo Chen, Kevin Müller, Mingming Tong, Fanny Aprahamian, Sylvère Durand, Giulia Cerrato, Lucillia Bezu, Marion Leduc, Joakim Franz, Patrick Rockenfeller, Junichi Sadoshima, Frank Madeo, Oliver Kepp, Guido Kroemer.
Microtubule-Associated Protein 1 Light Chain 3 (LC3) Isoforms in RPE and Retina. Adv. Exp. Med. Biol.1074: 609-616 (2018).(29721994)
Dhingra A, Alexander D, Reyes-Reveles J, Sharp R, Boesze-Battaglia K.
Trehalose-Induced Activation of Autophagy Improves Cardiac Remodeling After Myocardial Infarction. J. Am. Coll. Cardiol. (2018).(29724354)
Sebastiano Sciarretta, Derek Yee, Narayani Nagarajan, Franca Bianchi, Toshiro Saito, Valentina Valenti, Mingming Tong, Dominic P. Del Re, Carmine Vecchione, Leonardo Schirone, Maurizio Forte, Speranza Rubattu, Akihiro Shirakabe, V. Subbarao Boppana, Massimo Volpe, Giacomo Frati, Peiyong Zhai, Junichi Sadoshima.
A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice. Kidney Int. (2018).(30045814)
Zhang Y, Nakano D, Guan Y, Hitomi H, Uemura A, Masaki T, Kobara H, Sugaya T, Nishiyama A.
Autophagy and unfolded protein response (UPR) regulate mammary gland involution by restraining apoptosis-driven irreversible changes. Cell Death Discov. (2018).(30345078)
Wärri A, Cook KL, Hu R, Jin L, Zwart A, Soto-Pantoja DR, Liu J, Finkel T, Clarke R.